Ivane Javakhishvili Tbilisi State University
 Faculty Exact and Natural Sciences
 Department of Computer Sciences

Bachelor Program

Computer Science

Academic degree:
Bachelor of Computer Science

Tbilisi
2023

Faculty	Faculty Exact and Natural Sciences
Program name	Computer Science
Program volume in credits	240 ECTS
Language of teaching	English
Academic degree awarded	Bachelor of Computer Science
Prerequisite to access to the program	The Georgian citizens must pass Unified National Exams. Admission for the program requires minimal competence levels in following Unified National Exams: - English Language - 69\% + 1 - Mandatory subjects-minimum competence levels is determined by National Assessment and Examinations Center Mathematics/Physics - minimum competence levels is determined by TSU faculty Exact and Natural Sciences Foreign applicants should follow the rules and terms defined by the Ministry of Education and Science of Georgia (http://www.mes.gov.ge/content.php?id=1131\&lang=geo) according to the order №224/N of the Minister of Education and Science of Georgia (December 29, 2011). The Applicant should prove English language qualification equivalent to CEFR level B2 (or higher) or have a high school education in English. .
Program Heads	Manana Khachidze
Program Coordinator	Magda Tsintsadze
Tution fee	for the citizens of Georgia - 2250 GEL For foreign nationals - \$ 4000 or equal in GEL per academic year

Program Educational Objectives

The educational objectives of the undergraduate program "Computer Science" are to issue graduates who will

1. be productive, responsible computing science professionals conducting research and/or design developing and maintaining projects in the various areas of Computer Science,
2. understand and apply ethical issues and social aspects of computing science in performing their duties as computer science professionals,
3. continue the learning of new technologies in the computer science area through self-directed professional development or post-graduate education.

Student Outcomes

Department of Computer Sciences adopted ABET CAC Student outcomes:

1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
2. Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
3. Communicate effectively in a variety of professional contexts.
4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
6. Apply computer science theory and software development fundamentals to produce computingbased solutions.

ABET CAC Student outcomes	Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.			
2.	Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.			
3.	Communicate effectively in a variety of professional contexts.			
4.	Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.			
5.	Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.			
6.	Apply computer science theory and software development fundamentals to produce computing-based solutions			

Performance Indicators for Student Outcomes

Student Outcomes:

1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
PI 1: Analyze a complex computing problem to identify a solution

PI 2: Apply principles of computing to identify a solution to a complex computing problem PI 3: Apply principles of relevant disciplines to identify a solution to a complex computing problem
2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
PII1: Design a software solution to meet a given set of computing requirements
PII2: Implement a software solution to meet a given set of computing requirements
PII3: Evaluate a computing-based solution to meet a given set of computing requirements
3. Communicate effectively in a variety of professional contexts

PIII1: Participate effectively in group discussions
PIII2: Prepare an effective presentation
PIII3: Write an effective project report
4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
PIV1: Recognize professional responsibilities in computing practice based on legal and ethical principles.
PIV2: Make informed judgment in computing practice based on legal and ethical principles
5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
PV1: Effectively engaged in team as member or leader
PV2: Contributes effectively for common task
6. Apply computer science theory and software development fundamentals to produce computing-based solutions.
PVI1: Apply computer Science theory to produce a solution
PVI2: Apply software development fundamentals to produce a solution

Level Of Learning Achievement

The learning outcomes are defined in the disciplines envisaged by the Bachelor Program of "Computer Science", which are taught in I-VIII semester. To reach this level means:

- Knowledge of fundamental principles and theories in computer science;
- Ability to use key and fundamental algorithms of computer science in different fields of science and practice;
- Ability to use modern programming languages and tools;
- Ability to operate and use different purpose tools of computer science and information technology.

Fields of Employment

Fields of employment of Bachelor of Computer Science are: Governance bodies, educational institutions and organizations of different forms of ownership which use computer technologies for their activities. Bachelor of computer science is predominantly prepared for the development and use of modern methods in the field of economy, management and financial activities. Bachelor of Computer Science can occupy any position that according to the laws of Georgia require higher education. The presented bachelor program takes care of graduates' employment, by means of providing opportunities for continues education, as well as by means of invited lectures participating in the program: most of them are representatives of big employers at Georgian labor market, their tight relationship with students increases the chance of employment of successful students with favorable conditions.

The Possibility to Continue Learning

Bachelor of Computer Science will be able to continue their study at master degree programs in Computing area, which represent the extension of the undergraduate program. The graduates can continue their education also at master programs in mathematics, engineering, and other Natural Sciences those prerequisite are programming and mathematical knowledge. Major specialtychoosing deadline

The third semester is the deadline for choosing major specialty (optimal is the second semester). If students change their mind, they will be able to continue learning at other bachelor programs being carried out at the faculty (mathematics, electronics).

Program Delivery Modes

The Computer Science program is offered as an on-campus daytime program. Our academic year is divided into two semesters (fall and spring). Each semester 15 weeks of instruction, with the sixteenth week used for final examinations.
The required courses in computer science are offered in every semester, and the most of elective ones are offered at least once a year. Most undergraduate courses are offered during daytime.

There are three basic program delivery modes:
Lectures: verbal, problem-based learning (PBL), demonstration method, induction, deduction, analysis and synthesis.
Seminars, practical and laboratory teaching: verbal, book-based method, laboratory and demonstration methods, practical methods, induction methods, analysis method, and synthesis method, electronic attending (E-learning).

Team Projects: Verbal, PBL, E-learning, cooperative learning, collaborative work.

Grading scheme and grade distribution guidance

The student's knowledge is being evaluated according to the following system: "Excellent", "Very good", "Good", "Satisfactory", "Sufficient", "Marginal fail" and "Fail"
A student is evaluated in accordance with the following principle:

Scores	Evaluation	Classification of Evaluation	GPA of Evaluation
91 and more	(A) "Excellent"	Positive	4.0
$81-90$	(B) "Very good"	Positive	3.0
$71-80$	(C) "Good"	Positive	2.0
$61-70$	(D) "Satisfactory"	Positive	1.0
$51-60$	(E) "Sufficient"	Positive	0.5
$41-50$	(FX) "Marginal Fail"	Negative	0
40 and below	(F) "Fail"	Negative	0

The student's final mark in a specific subject is determined by the number of point collected by him/her in the different components (lecture, seminar, practical studies, laboratory exercises) in the course of interim and final (examination) evaluation.

The maximum a viable point in each course is 100 . Final exam does not exceed 40 points, interim evaluation represents a combination of test scores, presentation in the class, and team or individual projects. The weight of each components are different for different course and are defined in syllabuses
Grading System of the CS Program is consistent with the TSU standard grading system:

Evaluation	Scores	GPA
A	$91-100$	4.0
B	$81-90$	3.0
C	$71-80$	2.0
D	$61-70$	1.0
E	$51-60$	0.5
F-FX	$0-50$	0.0

Curriculum
Full volume of 240 ECTS. from here:
140 ECTS - Computer Science subjects;
30 ECTS - Mathematical subjects;
20 ECTS - Natural Sciences subjects;
30 ECTS - General education
20 ECTS - Free.

	Course	Subject status	気	ص్ర		Prerequisite	F\|r	
CS101	ICT Literacy	R	5	30/95	0/0/0/2	N/R		
CS102	Basics of Programming	R	5	60/65	2/0/0/2	N/R		
MaTh101	Calculus	R	5	60/65	2/2/0/0	N/R		
MaTh102	Linear Algebra	R	5	60/65	2/2/0/0	N/R		
GE	General Education Subject							
PH101	Introduction to Physic	R	5	60/65	2/2/0/0	N/R		
							30	30
CS104	Object Oriented Programming 1 ($\mathrm{C}++$)	R	5	60/65	2/2/0/0	CS102		
MaTh201	Discrete Mathematics	R	5	60/65	2/2/0/0	MaTh102		
MaTh202	Calculus for Computer Science	R	5	60/65	2/2/0/0	MaTh101		
PH105	Physic (Mechanics)	R	5	75/50	2/1/0/2	PH101		
GE	General Education Subject							
Elect.	CS/Math/GE/Sc	E	5					
							30	30
CS200 (212) (222) (242)	Object Oriented Programming 2 (C\#) or Object Oriented Programming 2 (Java) or Object Oriented Programming 2 (Python)	R	5	45/80	$\begin{aligned} & 1 / 2 / 0 / 0 \\ & 2 / 0 / 0 / 1 \\ & 1 / 0 / 0 / 2 \end{aligned}$	CS104		
CS203	Computer Architecture and Organization	R	5	45/80	1/0/1/1	CS104		
PH106	Physic (Electromagnetism)	R	5	75/50	2/1/0/2	PH105		
CS105	Data Structures	R	5	60/65	2/0/0/2	CS102		
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
							30	30
CS304	Data Base	R	5	60/65	1/0/1/2	CS104		
CS205	Data Analysis and Statistics	R	5	60/65	1/0/2/1	MaTh201		
CS302	Operating systems	R	5	45/80	1/0/1/1	CS104		
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
							30	30

CS303	Modeling and Simulation	R	5	60/65	1/0/2/1	CS205		
CS310	Algorithms	R	5	60/65	2/1/0/1	$\begin{aligned} & \text { MaTh201, } \\ & \text { CS105 } \end{aligned}$		
CS401	Software Engineering	R	5	30/95	1/0/1/0	CS200		
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
							30	30
CS416	Mathematical Programing	R	5	45/80	1/2/0/0	MaTh202		
CS305	Network Technologies and Communications	R	5	45/80	1/0/1/1	CS203		
CS202	Web Programming	R	5	60/65	2/0/0/2	CS104		
CS505	Functional Programing	R	5	45/80	1/1/0/1	CS104		
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
							30	30
CS417	Operations Research	R	5	45/80	1/1/0/1	CS416		
CS402	Project Preparation	R	5	30/95	1/0/1/0	165 ECTS		
CS512	Formal Language and Automata	R	5	45/80	1/2/0/0	CS310		
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
							30	30
CS403	Intelligent Systems	R	5	45/80	1/0/1/1	$\begin{aligned} & \text { CS310, } \\ & \text { CS104 } \end{aligned}$		
CS404	Computer law and Ethics	R	5	30/95	1/0/1/0	N/R		
CS405	Team Projects	R	5	30/95	0/0/2/0	CS402		
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
Elect.	CS/Math/GE/Sc	E	5					
					Sum		30	30
							240 ECTS	
Computer Scisnce Electives								
CS411	Algorithms Analyze and Complexity	SR	5	45/80	2/1/0/0	CS310		F/S
CS501	Algorithmic Information Theory	SR	5	30/95	1/1/0/0	CS310		F/S
CS502	Algorithms for Computational Topology	SR	5	30/95	1/1/0/0	CS310		F/S
CS503	Introduction to Complexity Theory	SR	5	30/95	1/1/0/0	CS310		F/S
CS508	ADO.NET technology - data access from NET application	SR	5	45/80	1/0/0/2	CS200(212)		F/S
CS510	Programming with Java (Advanced Course)	SR	5	45/80	2/0/0/1	CS200(222)		F/S

CS511	Information Management	SR	5	45/80	2/0/1/0	CS101	F/S
CS513	Genetic Algorithms	SR	5	45/80	1/1/0/1	CS310	F/S
CS514	Neural Networks	SR	5	45/80	1/1/0/1	CS310	F/S
CS520	Network Technologies and Communications 2	SR	5	45/80	1/1/0/1	CS305	F/S
CS521	Operating System Linux for Servers	SR	5	45/80	1/0/0/2	CS302	F/S
CS536	Introduction to Scientific Modeling	SR	5	45/80	1/0/0/2	CS102, Math101	F/S
CS537	Machine Learning	SR	5	45/80	1/1/0/1	CS104, CS310	F/S
CS541	IT Project Management	SR	5	45/80	1/0/0/2	CS101	F/S
CS542	Introduction Bioinformatics	SR	5	45/80	1/2/0/0	CS105	F/S
CS555	Internship	SR	5				F/S
CS526	Introduction to Linux systems	SR	5	45/80	1/2/0/0	CS104	F/S
CS530	Software testing	SR	5	30/95	1/0/0/1	$\begin{aligned} & \text { CS200 (212 or } \\ & 222 \text { or } 242) \end{aligned}$	F/S
CS560	Modern Concurrency Programming	SR	5	30/95	1/0/0/1	CS 104	F/S
CS561	Modern technologies of data analysis	SR	5	30/95	1/0/0/1	CS101	F/S
CS562	Advanced C Programming	SR	5	45/80	1/0/1/1	CS102	F/S
CS533	Mobile Based Programming	SR	5	45/80	1/0/0/2	CS200(222)	F/S
CS568	IT Business Analytics	SR	5	30/95	1/1/0/0	CS205	F/S
CS569	Data Storage and Processing Technologies	SR	5	45/80	1/0/0/2	CS200(242)	F/S
CS567	Natural Language Processing	SR	5	45/80	1/0/2/0	CS200(242)	F/S
CS601	Advance topic of Computer Sciences	SR	5	45/80	1/0/2/0	CS104	F/S
CS001	Computing Technology	SR	5	45/80	1/0/1/1	N/R	F/S
CS545	Compilers	SR	5	45/80	1/2/0/0	CS302	F/S
CS571	System Programming	SR	5	45/80	1/0/0/2	CS104	F/S
CS602	Graphical Programming	SR	5	45/80	1/0/0/2	CS102	F/S

Mathematical subjects electives							
MaTh301	Applied Probability	SR	5	45/80	1/0/2/0	MaTh101	F/S
Math503	Numerical Analysis	SR	5	45/80	1/1/0/1	MaTh101, MaTh102, CS102	F/S
MaTh504	Technologies of Mathematical Modeling	SR	5	45/80	1/0/0/2	MaTh101	F/S
MaTh505	Applied Statistics	SR	5	45/80	1/2/00	MaTh101, MaTh102	F/S
General Education							
GE101	Georgian Language for Foreigners 1	SR	5	60/65	0/0/4/0	N/R	F/S
GE102	Georgian Language for Foreigners 2	SR	5	60/65	0/0/4/0	GE101	F/S
GE103	Georgian Language for Foreigners 3	SR	5	60/65	0/0/4/0	GE102	F/S
GE521	A live Language 1 (French)	SR	5	60/65	0/0/4/0	N/R	F/S
GE522	A live Language 2 (French)	SR	5	60/65	0/0/4/0	GE521	F/S
GE523	Intercultural Education	SR	5	45/80	1/0/2/0	N/R	F/S

CS Program Course Mapping to Program SLOs.

CS Program Courses	PI 1			PI 2			PI 3			PI 4		PI 5		PI 6	
	P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P5.1	P5.2	P6.1	P6.2
CS 101 I T Literacy								L	L	L					
CS 102 Basics of Programming	L	L			L									L	
CS 104 Objects Oriented Programming 1 (C ++)	M			M	L									L	L
$\text { CS } 105 \text { Data }$ Structures	L		L	L	L		M								
CS 310 Algorithms	L	L		M			M	M				M			
CS 202(212, 222, 242) Objects Oriented Programming 2 (Java, C\#, Python)	H	H		M	M	H								H	M
CS 203-Computer Architecture and Organization	M			M	M	M	M		M						
CS 304 Data Base	H			M	H	M			M			H			
CS 205 Data Analysis and Statistics	H			M	M	M	M	M							M
CS416 Mathematical Programming	H			M	H									M	

CS 417 Operations Research	\mathbf{H}			\mathbf{H}	\mathbf{H}									
CS 302 Operating systems	\mathbf{H}		\mathbf{M}	\mathbf{H}		\mathbf{H}		\mathbf{H}				\mathbf{H}		
CS 303 Modeling and Simulation	\mathbf{M}	\mathbf{H}		\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{H}				\mathbf{H}		
CS 202 Web Programming		\mathbf{H}		\mathbf{H}	\mathbf{H}	\mathbf{M}						\mathbf{H}		
CS 305 Network Technologies and Communications	\mathbf{H}	\mathbf{M}		\mathbf{M}	\mathbf{H}	\mathbf{M}	\mathbf{L}		\mathbf{H}					
CS 401 Software Engineering	\mathbf{H}			\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{H}			\mathbf{H}	\mathbf{H}			
CS 402 Project Preparation			\mathbf{H}				\mathbf{H}	\mathbf{H}		\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{H}
CS 403 Intelligent Systems	\mathbf{H}			\mathbf{H}	\mathbf{H}	\mathbf{H}			\mathbf{H}					
CS 404 Computer law and Ethics										\mathbf{H}	\mathbf{H}			
CS 405 Team Projects		\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{H}		\mathbf{H}	\mathbf{H}	\mathbf{H}		\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{H}

[^0]
[^0]: H- High
 M - Middle
 L - Low

